Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

$\mathrm{NdO}\left(\mathrm{NO}_{3}\right)$

Ya-Feng Li,* Li Jin, Dan-Ping Li and Long Zhang

School of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
Correspondence e-mail: fly012345@sohu.com

Received 30 October 2008; accepted 6 November 2008

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{O}-\mathrm{N})=0.007 \AA$;
R factor $=0.024 ; w R$ factor $=0.068$; data-to-parameter ratio $=12.1$.

The title compound, neodymium(III) oxide nitrate, which is isostructural with $\mathrm{LaO}\left(\mathrm{NO}_{3}\right)$, arose from a solvothermal reaction. The Nd ion (site symmetry m) is ten-coordinated by eight O atoms of NO_{3} groups and two μ_{2}-oxide ions. A threedimensional structure is constructed by the interconnection of NdO_{10} polyhedra. The oxide ion and the N atom and one of the nitrate O atoms possess site symmetry m.

Related literature

For background, see: Gobichon et al. (1997); Guillou et al. (1994). For an isostructural compound, see: Zhang et al. (2004).

Experimental

Crystal data	
$\mathrm{NdO}\left(\mathrm{NO}_{3}\right)$	$V=338.46(11) \AA^{3}$
$M_{r}=222.25$	$Z=4$
Orthorhombic, Pnma	Mo $K \alpha$ radiation
$a=7.5233(15) \AA$	$\mu=15.19 \mathrm{~mm}^{-1}$
$b=5.1618(10) \AA$	$T=293(2) \mathrm{K}$
$c=8.7157(17) \AA$	$0.16 \times 0.14 \times 0.12 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID

 diffractometerAbsorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\text {min }}=0.107, T_{\text {max }}=0.158$

2962 measured reflections 410 independent reflections 405 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.034$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024 \quad 34$ parameters
$w R\left(F^{2}\right)=0.068 \quad 30$ restraints
$S=1.81$
410 reflections
$\Delta \rho_{\text {max }}=1.02$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-1.42 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Nd} 1-\mathrm{O} 2^{\mathrm{i}}$	$2.434(5)$	$\mathrm{Nd} 1-\mathrm{O} 1$	$2.694(3)$
$\mathrm{Nd} 1-\mathrm{O} 2$	$2.458(5)$	$\mathrm{Nd} 1-\mathrm{O} 1^{\mathrm{iii}}$	$2.719(4)$
$\mathrm{Nd} 1-\mathrm{O} 3^{\mathrm{ii}}$	$2.6362(12)$	$\mathrm{Nd} 1-\mathrm{O} 1^{\mathrm{ii}}$	$2.826(4)$
Symmetry codes: (i) $x+\frac{1}{2}, y,-z+\frac{3}{2} ;$ (ii) $x-\frac{1}{2}, y,-z+\frac{3}{2} ;($ iii $)-x+1, y+\frac{1}{2},-z+2$			

Data collection: PROCESS-AUTO (Rigaku, 2002); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL97.

The project is sponsored by the Scientific Research Foundation for Returned Overseas Chinese Scholars, Chinese Education Ministry (grant No. 20071108).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2833).

References

Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany. Gobichon, A. E., Auffrédic, J. P. \& Louër, D. (1997). Solid State Ionics, 93, 5164.

Guillou, N., Auffrédic, J. P. \& Louër, D. (1994). J. Solid State Chem. 112, 45-52.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (2002). PROCESS-AUTO and CrystalStructure. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Zhang, Q., Lu, C., Yang, W., Chen, S. \& Yu, Y. (2004). Inorg. Chem. Commun. 7, 889-892.

supplementary materials

$\mathrm{NdO}\left(\mathrm{NO}_{3}\right)$

Y.-F. Li, L. Jin, D.-P. Li and L. Zhang

Comment

The lanthanide nitrates are not only applied for separation of the lanthanide elements but also widely utilized as the precursor of organic or inorganic synthesis. Thus, a large number of lanthanide nitrates are structurally determinated besides a few anhydrous examples (Guillou, et al., 1994; Zhang, et al., 2004; Gobichon, et al., 1997). In this work, the title compound, (I), an anhydrous neodymium oxide nitrate, was unexpectedly obtained under solvothermal conditions in a mixed solvent of $\mathrm{H}_{2} \mathrm{O}$ and DMF.

The asymmetric unit of (I) is consisted of $0.5 \mathrm{~N} \mathrm{~d}, 0.5 \mathrm{O}$ and $0.5 \mathrm{NO}_{3}$ (Fig. 1). All oxygen atoms of NO_{3} group are coordinated to the Nd ions. Two oxygen atoms of nitrate group (O 1 and $\mathrm{O} 1^{\mathrm{vi}}$) are coordinated to three different Nd ions with $\mathrm{Nd}-\mathrm{O}$ distances in the range of $2.694-2.826 \mathrm{~A}^{\circ}$, and the last one (O3) is coordinated to two different Nd ions with $\mathrm{Nd}-\mathrm{O}$ distance of $2.636 \mathrm{~A}^{\circ}$ (Table 1). A $\mu_{2}-\mathrm{O}(\mathrm{O} 2)$ exists in the structure of (I) with $\mathrm{Nd}-\mathrm{O}$ distances of 2.434 and 2.458 A° and corresponding Nd-O2-Nd bond angles of 110.72°. These two $\mathrm{Nd}-\mathrm{O}$ distances are significantly shorter than the others $\mathrm{Nd}-\mathrm{O}$ distances. Then, the linkages of two adjacent Nd ions are in two modes, of which one is via $\mathrm{Nd}-\mu_{2}-\mathrm{O}-\mathrm{Nd}$ bonds with $\mathrm{Nd}-\mathrm{Nd}$ distance of 4.0254 (8) A° and the other via $\mathrm{Nd}-\mathrm{O}\left(\mathrm{NO}_{3}\right)-\mathrm{Nd}$ bonds. A three-dimensional framework constructed by the interconnections of NdO_{10} polyhedra is shown in Fig. 2.

There are two different structures with the same molecular formula of LnONO_{3}, such as $\mathrm{LnONO}_{3}(\mathrm{Ln}=\mathrm{Y}, \mathrm{La})$ in the $\mathrm{P}_{4} / \mathrm{mmm}$ space group and LaONO_{3} in Pnma space group. In this work, NdONO_{3} is the isostructural compound of the reported LaONO_{3} (Zhang, et al., 2004).

Experimental

Isonicotine ($0.123 \mathrm{~g}, 1.0 \mathrm{mmol}$) was added to a mixed solution of $5 \mathrm{ml} \mathrm{H}_{2} \mathrm{O} / 3 \mathrm{ml}$ DMF. After being stirred for 5 h , the isonicotine was partially dissovled with $\mathrm{pH}=6.0$. Then, $\mathrm{Nd}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.220 \mathrm{~g}, 0.5 \mathrm{mmol})$ was added and stirred for 7 h . The molar ratio of $\mathrm{Nd}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$: isonicotine was 1:2. Finally, the solution with $\mathrm{pH}=7.0$ was sealed into 23 ml autoclave and heated up to 438 K for 4 days. After naturally cooling to room temperature, colourless prisms of (I) were obtained.

Figures

supplementary materials

Fig. 2. A packing diagram for (I), viewed along [010].

neodymium(III) oxide nitrate

Crystal data

$\mathrm{NdO}\left(\mathrm{NO}_{3}\right)$

$M_{r}=222.25$
Orthorhombic, Pnma
Hall symbol: -P 2ac 2n
$a=7.5233$ (15) \AA
$b=5.1618(10) \AA$
$c=8.7157(17) \AA$
$V=338.46$ (11) \AA^{3}
$Z=4$
$F_{000}=396$
$D_{\mathrm{x}}=4.362 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 2000 reflections
$\theta=3.6-27.0^{\circ}$
$\mu=15.19 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.16 \times 0.14 \times 0.12 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
Detector resolution: 10.00 pixels mm^{-1}
$T=293(2) \mathrm{K}$
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.107, T_{\text {max }}=0.158$
410 independent reflections
405 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=27.0^{\circ}$
$\theta_{\text {min }}=3.6^{\circ}$
$h=-9 \rightarrow 8$
$k=-5 \rightarrow 6$
$l=-11 \rightarrow 11$
2962 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.068$
$S=1.81$
410 reflections

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0285 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\max }=1.02 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-1.42 \mathrm{e} \AA^{-3}$

Abstract

34 parameters Extinction correction: none 30 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Nd1	$0.35352(4)$	0.2500	$0.83222(4)$	$0.0055(2)$
O1	$0.6501(4)$	$-0.0288(7)$	$0.8846(4)$	$0.0047(7)$
O2	$0.0359(6)$	0.2500	$0.8985(6)$	$0.0080(10)$
O3	$0.7902(7)$	-0.2500	$0.6964(6)$	$0.0088(10)$
N1	$0.6934(10)$	-0.2500	$0.8195(7)$	$0.0120(13)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Nd1	$0.0051(3)$	$0.0052(3)$	$0.0061(3)$	0.000	$0.00018(11)$	0.000
O1	$0.0054(10)$	$0.0043(10)$	$0.0045(10)$	$0.0002(7)$	$0.0004(7)$	$-0.0001(8)$
O2	$0.0072(12)$	$0.0091(12)$	$0.0076(13)$	0.000	$-0.0001(9)$	0.000
O3	$0.0091(13)$	$0.0088(13)$	$0.0086(12)$	0.000	$0.0022(9)$	0.000
N1	$0.0121(15)$	$0.0120(15)$	$0.0121(15)$	0.000	$-0.0005(9)$	0.000

Geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$)

$\mathrm{Nd} 1-\mathrm{O} 2{ }^{\text {i }}$	2.434 (5)	Nd1-Nd1 ${ }^{\text {ii }}$	4.0254 (8)
$\mathrm{Nd} 1-\mathrm{O} 2$	2.458 (5)	Nd 1 - $\mathrm{Nd} 11^{\text {i }}$	4.0254 (8)
Nd1-O3 $3^{\text {ii }}$	2.6362 (12)	$\mathrm{O} 1-\mathrm{N} 1$	1.316 (5)
Nd1-O3 $3^{\text {iii }}$	2.6362 (12)	$\mathrm{O} 1-\mathrm{Nd} 1^{\text {vi }}$	2.719 (4)
$\mathrm{Nd} 1-\mathrm{O} 1^{\text {iv }}$	2.694 (3)	$\mathrm{O} 1-\mathrm{Nd} 1{ }^{\text {i }}$	2.826 (4)
Nd1-O1	2.694 (3)	$\mathrm{O} 2-\mathrm{Nd} 1{ }^{\text {ii }}$	2.434 (5)
$\mathrm{Nd} 1-\mathrm{O} 1^{\text {v }}$	2.719 (4)	$\mathrm{O} 3-\mathrm{N} 1$	1.297 (8)
$\mathrm{Nd} 1-\mathrm{Ol}{ }^{\text {vi }}$	2.719 (4)	O3-Nd1 ${ }^{\text {i }}$	2.6362 (12)
Nd1-O1 $1^{\text {ii }}$	2.826 (4)	$\mathrm{O} 3-\mathrm{Nd1}{ }^{\text {viii }}$	2.6362 (12)
Nd1-O1 ${ }^{\text {vii }}$	2.826 (4)	$\mathrm{N} 1-\mathrm{O} 1^{\text {ix }}$	1.316 (5)
$\mathrm{O} 2-\mathrm{Nd} 1-\mathrm{O} 2$	137.90 (13)	$\mathrm{O} 3{ }^{\text {ii }}-\mathrm{Nd} 1-\mathrm{O} 1^{\text {ii }}$	48.73 (13)

supplementary materials

$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Nd} 1-\mathrm{O} 3{ }^{\text {ii }}$	91.36 (11)	$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Nd} 1-\mathrm{O} 1^{\text {ii }}$	109.73 (13)
$\mathrm{O} 2-\mathrm{Nd} 1-\mathrm{O} 3{ }^{\text {ii }}$	81.18 (12)	$\mathrm{O} 1^{\text {iv }}-\mathrm{Nd} 1-\mathrm{O} 1^{\text {ii }}$	146.51 (6)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Nd} 1-\mathrm{O} 3{ }^{\text {iii }}$	91.36 (11)	$\mathrm{O} 1-\mathrm{Nd} 1-\mathrm{O} 1^{\text {ii }}$	106.85 (12)
$\mathrm{O} 2-\mathrm{Nd} 1-\mathrm{O} 3^{\text {iii }}$	81.18 (12)	$\mathrm{O1}{ }^{\mathrm{v}}$ - $\mathrm{Nd} 1-\mathrm{O} 1^{\text {ii }}$	144.63 (7)
$\mathrm{O} 3{ }^{\text {ii }}-\mathrm{Nd} 1-\mathrm{O} 3{ }^{\text {iii }}$	156.5 (2)	$\mathrm{O} 1^{\mathrm{vi}}-\mathrm{Nd} 1-\mathrm{O} 1^{\text {ii }}$	112.81 (4)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Nd} 1-\mathrm{O} 1^{\text {iv }}$	70.92 (12)	$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Nd} 1-\mathrm{O} 1{ }^{\text {vii }}$	75.69 (11)
$\mathrm{O} 2-\mathrm{Nd} 1-\mathrm{O} 1^{\text {iv }}$	139.92 (10)	$\mathrm{O} 2-\mathrm{Nd} 1-\mathrm{O} 1^{\text {vii }}$	68.33 (11)
$\mathrm{O} 3{ }^{\text {ii }}-\mathrm{Nd} 1-\mathrm{O} 1^{\text {iv }}$	133.51 (14)	$\mathrm{O} 3{ }^{\text {ii }}-\mathrm{Nd} 1-\mathrm{O} 1^{\text {vii }}$	109.73 (13)
$\mathrm{O} 3{ }^{\text {iiii }}-\mathrm{Nd} 1-\mathrm{O} 1^{\text {iv }}$	69.06 (14)	$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Nd} 1-\mathrm{O} 1^{\text {vii }}$	48.73 (13)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Nd} 1-\mathrm{O} 1$	70.92 (12)	$\mathrm{O} 1^{\text {iv }}-\mathrm{Nd} 1-\mathrm{O} 1^{\text {vii }}$	106.85 (12)
$\mathrm{O} 2-\mathrm{Nd} 1-\mathrm{O} 1$	139.92 (10)	$\mathrm{O} 1-\mathrm{Nd} 1-\mathrm{O} 1^{\text {vii }}$	146.51 (6)
$\mathrm{O} 3{ }^{\text {iii }} \mathrm{Nd} 1-\mathrm{O} 1$	69.06 (14)	$\mathrm{O1}^{\mathrm{v}}$ - $\mathrm{Nd} 1-\mathrm{O} 1^{\text {vii }}$	112.81 (4)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Nd} 1-\mathrm{O} 1$	133.51 (14)	$\mathrm{O} 1^{\text {vi }}-\mathrm{Nd} 1-\mathrm{O} 1^{\text {vii }}$	144.63 (7)
$\mathrm{O} 1^{\text {iv }}-\mathrm{Nd} 1-\mathrm{O} 1$	64.57 (15)	$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Nd} 1-\mathrm{O} 1^{\mathrm{vii}}$	61.23 (15)
$\mathrm{O} 2 \mathrm{i}-\mathrm{Nd} 1-\mathrm{O} 1^{\text {v }}$	139.04 (10)	Nd1 $1^{\text {ii }}$ - $\mathrm{Nd} 1-\mathrm{Nd} 1{ }^{\text {i }}$	138.29 (2)
$\mathrm{O} 2-\mathrm{Nd} 1-\mathrm{O} 1^{\text {v }}$	77.12 (12)	$\mathrm{N} 1-\mathrm{O} 1-\mathrm{Nd} 1$	126.5 (4)
$\mathrm{O} 3{ }^{\text {ii }}-\mathrm{Nd} 1-\mathrm{Ol}^{\text {v }}$	119.67 (13)	$\mathrm{N} 1-\mathrm{O} 1-\mathrm{Nd1}{ }^{\text {vi }}$	91.7 (3)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Nd} 1-\mathrm{Ol}^{\mathrm{v}}$	70.90 (13)	Nd1-O1-Nd1 ${ }^{\text {vi }}$	111.71 (11)
$\mathrm{O} 1^{\text {iv }}-\mathrm{Nd} 1-\mathrm{O} 1^{\text {v }}$	68.29 (11)	$\mathrm{N} 1-\mathrm{O} 1-\mathrm{Nd} 1{ }^{\text {i }}$	91.1 (3)
$\mathrm{O} 1-\mathrm{Nd} 1-\mathrm{O} 1^{\text {v }}$	94.51 (7)	$\mathrm{Nd} 1-\mathrm{O} 1-\mathrm{Nd} 11^{\text {i }}$	93.62 (12)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Nd} 1-\mathrm{O} 1^{\text {vi }}$	139.04 (10)	$\mathrm{Nd} 1{ }^{\text {vi }}-\mathrm{O} 1-\mathrm{Nd} 1^{\text {i }}$	145.72 (12)
$\mathrm{O} 2-\mathrm{Nd} 1-\mathrm{O} 1^{\text {vi }}$	77.12 (12)	$\mathrm{Nd} 1{ }^{\text {ii }}-\mathrm{O} 2-\mathrm{Nd} 1$	110.73 (19)
$\mathrm{O} 3{ }^{\mathrm{ii}}-\mathrm{Nd} 1-\mathrm{O} 1^{\text {vi }}$	70.90 (13)	$\mathrm{N} 1-\mathrm{O} 3-\mathrm{Nd} 1{ }^{\text {i }}$	100.35 (11)
$\mathrm{O} 3{ }^{\text {iiii }}-\mathrm{Nd} 1-\mathrm{Ol}^{\text {vi }}$	119.67 (13)	N1-O3-Nd1 ${ }^{\text {viii }}$	100.35 (11)
$\mathrm{O} 1^{\text {iv }}-\mathrm{Nd1}-\mathrm{Ol}^{\text {vi }}$	94.51 (7)	$\mathrm{Nd} 1{ }^{\text {i }}-\mathrm{O} 3-\mathrm{Nd} 1{ }^{\text {viii }}$	156.5 (2)
$\mathrm{O} 1-\mathrm{Nd} 1-\mathrm{Ol}^{\text {vi }}$	68.29 (11)	O3-N1-O1	119.7 (3)
$\mathrm{O} 1^{\mathrm{v}}-\mathrm{Nd} 1-\mathrm{O} 1^{\text {vi }}$	49.66 (16)	$\mathrm{O} 3-\mathrm{N} 1-\mathrm{O} 1^{\mathrm{ix}}$	119.7 (3)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Nd} 1-\mathrm{O} 1^{\mathrm{ii}}$	75.69 (11)	$\mathrm{O} 1-\mathrm{N} 1-\mathrm{O} 1^{\text {ix }}$	120.4 (6)
$\mathrm{O} 2-\mathrm{Nd} 1-\mathrm{O} 1^{\text {ii }}$	68.33 (12)		

Symmetry codes: (i) $x+1 / 2, y,-z+3 / 2$; (ii) $x-1 / 2, y,-z+3 / 2$; (iii) $x-1 / 2, y+1,-z+3 / 2$; (iv) $x,-y+1 / 2, z$; (v) $-x+1, y+1 / 2,-z+2$; (vi) $-x+1$, $-y,-z+2$; (vii) $x-1 / 2,-y+1 / 2,-z+3 / 2$; (viii) $x+1 / 2, y-1,-z+3 / 2$; (ix) $x,-y-1 / 2, z$.

Fig. 1

Fig. 2

